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Abstract 

Background  Genomic selection, typically employing genetic markers from SNP chips, is routine in modern dairy cat-
tle breeding. This study assessed the impact of functional sequence variants on genomic prediction accuracy relative 
to 50 k SNP chip markers for fat percent, protein percent, milk volume, fat yield, and protein yield in lactating dairy cat-
tle. The functional variants were identified through GWAS, RNA-seq, Histone modification ChIP-seq, ATAC-seq, or were 
coding variants. The genomic prediction accuracy obtained using each class of functional variants was compared 
with matched numbers of SNPs randomly selected from the Illumina 50 k SNP chip.

Results  The investigation revealed that variants identified by GWAS or RNA-seq, significantly improved the predic-
tion accuracy across all five traits. Contributions from ChIP-seq, ATAC-seq, and coding variants varied. Some variants 
identified using ChIP-seq showed marked improvements, while others reduced accuracy in protein yield predictions. 
Relative to a matched number of 32,595 SNPs from the SNP chip, pooling all the functional variants demonstrated 
prediction accuracy increases of 1.76% for fat percent, 2.97% for protein percent, 0.51% for milk volume, and 0.26% 
for fat yield, but with a slight decrease of 0.43% in protein yield.

Conclusion  The study demonstrates that functional variants can improve prediction accuracy relative to equivalent 
numbers of variants from a generic SNP panel, with percent traits showing more significant gains than yield traits. The 
main advantage of using functional variants for genomic prediction was achievement of comparable accuracy using 
a smaller, more selective set of loci. This is particularly evident in trait-specific scenarios. Our findings indicate that spe-
cific combinations of functional variants comprising 16 k variants can achieve genomic prediction accuracy compara-
ble to employing a standard panel of twice the size (32.6 k), especially for percent traits. This highlights the potential 
for the development of more efficient, trait-focused SNP panels utilizing functional variants.
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Background
Genomic selection, an approach now extensively 
employed in both animal and plant breeding programs, 
depends on the use of markers. This technique can 
be applied to complex traits, in which case it usually 
employs a large number of markers dispersed through-
out the genome to estimate an individual’s genetic value, 
or Genomic Estimated Breeding Value (GEBV) [1]. The 
accuracy of GEBVs, particularly for young animals with-
out individual phenotypes, surpasses the accuracy of 
EBVs obtained using only traditional pedigree methods 
[2]. This may allow a reduction in generation interval in 
some circumstances, especially in comparison to prog-
eny-test based selection in dairy cattle, potentially dou-
bling the rate of genetic gain [3, 4].

Emerging research suggests that the accuracy of 
genomic prediction can be enhanced through the incor-
poration of causal variants [5, 6]. However, previous 
studies using whole-genome sequence-derived causal 
variants demonstrated only limited improvement to 
the accuracy of genomic prediction [7, 8]. This limited 
improvement could stem from the large standard errors 
in marker effect estimation, particularly when the train-
ing population is small [7, 8]. Furthermore, when all 
sequence data are fitted simultaneously, long-range link-
age disequilibrium could mask the true location of the 
underlying Quantitative Trait Nucleotide (QTN) [7, 8]. 
This can lead to erroneous assignment of causal effects 
to non-causal variants in LD with the true QTN. Such 
misallocation of effects can introduce bias and reduce 
the model’s predictive power, particularly when applied 
to different populations where LD patterns may vary. The 
challenge associated with using whole-genome sequence 
data is compounded relative to SNP chip markers due to 
the substantial costs and computational demands.

A potentially viable alternative is to select an informa-
tive set of variants, such as variants with predicted func-
tional effects to attempt to enhance genomic prediction 
accuracy. Functional variants that have been imputed 
into high-density SNP genotypes have demonstrated 
an improved genomic prediction accuracy in sheep and 
dairy cattle [6, 9, 10]. However, despite some promising 
results, the application of functional variants in genomic 
prediction is still in its developmental stages. Genome-
wide association studies (GWAS) targeting traits of inter-
est are often conducted to identify functional variants. 
These studies facilitate the identification of variants that 
are relevant to the traits being investigated [6, 9, 10]. 
These variants could enhance genomic prediction for 
new populations when genetic information from diverse 
breeds is incorporated. It is important to note that this 
strategy is distinct from selection based only on annota-
tion. Here, the chosen variants have established empirical 

associations with the traits of interest as well as being 
supported by evidence from annotation, thereby increas-
ing their relevance to the traits under consideration.

The selection of functional variants can be extended 
to include those that impact molecular rather than pro-
duction phenotypes, as QTL for molecular traits are 
hypothesized to underlie the genetic signals observed in 
more complex traits [11]. Molecular QTL can be identi-
fied from a variety of sequencing technologies, though 
perhaps most commonly they come from the imple-
mentation of RNA sequencing techniques (RNA-seq) to 
construct molecular phenotypes. RNA-seq data provides 
an extensive profile of the transcriptome in a particular 
tissue at a particular time, including gene expression lev-
els, alternative splicing events, and post-transcriptional 
modifications. By capturing the underlying regulatory 
mechanisms, RNA-seq data might help identify vari-
ants that will improve genomic predictions. Moreover, 
RNA-seq data may highlight expression quantitative trait 
loci (eQTLs), allowing the identification of tag variants 
of modulator loci that may impact complex phenotypes 
[12]. This approach has shown significant potential for 
enhancing genomic prediction accuracy in dairy cattle 
[13]. In further support of this approach, it was observed 
that SNPs within eQTL or splicing QTL account for over 
two-thirds of heritability, on average, across various traits 
[14].

Chromatin Immunoprecipitation Sequencing (ChIP-
seq) data representing histone modifications serves as 
another potential source of molecular QTL tag variants. 
Histone modifications play a pivotal role in regulating 
gene expression by altering the accessibility of functional 
elements in the DNA to transcription factors and other 
regulatory factors. By identifying variants associated with 
histone modifications, QTL can be identified that influ-
ence gene activity and, consequently, complex traits in 
dairy cattle [15]. Chromatin accessibility can be assayed 
more directly using the Assay for Transposase-Accessible 
Chromatin with Sequencing (ATAC-seq), and variants 
within ATAC-seq peaks might be expected to be useful 
for genomic selection. In addition to the regulatory and 
expression variants identified by histone modification 
ChIP-seq and ATAC-seq, incorporating coding vari-
ants, which are identified through sequencing, could fur-
ther enhance genomic prediction accuracy. By including 
variants that alter the amino acid sequence of proteins, 
inclusion of these variants may capture protein func-
tion effects distinct to the regulatory impacts assayed by 
RNA-seq, ChIP-seq, and ATAC-seq.

This paper investigates the influence of putative func-
tional variants identified using five different methodolo-
gies: GWAS, RNA-seq, histone modification ChIP-seq, 
ATAC-seq variants, and coding variants. Additionally, we 
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have tested combinations of variant categories to ascer-
tain the collective efficacy of these functional variant sets.

Specifically, our primary aim was to assess the impact 
of tag and putative functional variants on the accuracy 
of genomic prediction, when benchmarked to equiva-
lent numbers of ‘random’ variants from a public bovine 
Illumina 50  k SNP chip. We assess five important traits 
in lactating dairy cattle: fat percent, protein percent, milk 
volume, fat yield, and protein yield, with functional vari-
ants covering a range of genomic annotations and cat-
egories, including both coding and non-coding variants 
assumed to have regulatory effects on genes.

Methods
Study population, animals, and milk samples
First lactation phenotypes based on commercially col-
lected herd test records were adjusted for non-genetic 
effects to construct yield deviations (YD) for 494,963 
cows included in animal evaluation at Livestock Improve-
ment Corporation (LIC). Routine herd testing typically 
involves alternate monthly herd testing in which repre-
sentative subsamples of milk are collected and weighed 
to determine milk volumes at AM and PM milkings, then 
pooled and subjected to Fourier-Transform Mid-Infrared 
(FT-MIR) spectroscopy to estimate 24-h fat percent and 
protein percent. Fat and protein yield were estimated by 
multiplying the respective estimates of percent traits by 
the estimated 24-h milk volume.

Genotype calling
Genotypes for functional variants were extracted from 
imputed sequence variants for (n = 166,664) cows, using 
the method and imputation reference sets previously 
described in [16]. In brief, genotypes from a variety of 
lower density SNP chip panels were successively imputed 
to Illumina 777  k density based on a reference popula-
tion of 3769 animals genotyped on the 777 k chip, then 
imputed in a subsequent step to whole genome sequence 
(WGS) density using a reference of 1298 animals with 
individual whole genome sequence data at an average 
depth of 15 ×. After filtering to remove variants with dos-
age R2 (as calculated by Beagle) less than 0.9, this yielded 
16.1 million variants with a mean dosage R2 of 0.995. 
Subsets of functional variants were identified within this 
dataset based on the criteria described in the following 
sections. Some 91,214 of the 166,664 genotyped cows 
with yield deviation phenotypes, that had not been used 
in the discovery of any of the functional variants, were 
used to compare predictive performance in this study. 
These animals comprised 21,584 Holstein-Friesians, as 
defined by having ≥ 15/16ths of their ancestry recorded 
to this breed based on pedigree, as well as 12,292 Jerseys, 

45,822 Holstein–Friesian-Jersey cross-bred animals, and 
11,516 crosses of other breeds.

Data analysis
Various systematic genetic factors, such as covariates 
reflecting ancestry-based coefficients for heterosis, breed, 
and inbreeding, as well as non-genetic factors such as 
contemporary group, breed × age, test day mean and Leg-
endre polynomials describing the effects of days in milk 
were fitted as fixed effects and used to adjust the raw 
phenotypes to produce yield deviations for subsequent 
analysis. The adjustment of cow phenotypes involved the 
following equation:

In this equation, y represents a vector of phenotypes, 
and β represents the fixed class and covariate effects 
listed above. By employing this equation, the residuals or 
adjusted phenotypes ( y − Xβ̂ ) were obtained and subse-
quently utilized for the genomic evaluation.

Inference was based on Markov chain Monte Carlo 
(MCMC) samples, with each chain consisting of 300,000 
samples. Subsamples were saved every 200 iterations, fol-
lowing a burn-in period where the initial 50,000 samples 
in each sequence were discarded. The genomic evalu-
ation was conducted by fitting a BayesCpi model [17] 
implemented using Gibb’s sampling in JWAS [18]. To 
assess the performance of each class of functional vari-
ants, a five-fold cross-validation approach was employed. 
This involved five mutually exclusive validation data-
sets, where each comprised approximately 20% of the 
91,215 genotyped cows (n = 18,243) constructed by ran-
dom sampling without replacement. For each of the five 
validation datasets, the remaining 80% of the data com-
prising the other four datasets (n = 72,972) served as 
the training population, which was used to estimate the 
marker effects that were used to predict breeding values 
for the animals in the validation dataset.

The average correlation between the estimated genomic 
breeding values and the adjusted phenotypes in the test 
population was computed to quantify the genomic pre-
diction accuracy. This accuracy assessment was per-
formed for each of the five traits under investigation.

GWAS SNP
The data and methodology described in Tiplady et al. [19] 
were used to conduct GWAS except the reference was 
based on the newer ARS-UCD1.2 genome rather than 
the older UMD3.1 genome. The GWAS training popula-
tion comprised 38,085 animals of mixed breed that were 
not part of the 91,215 animals used in validation. The 
phenotypes used were Fourier-transform mid-infrared 
(FTIR-MIR) predicted milk composition yield deviations 

(1)y = Xβ+ e
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for fat percent, protein percent, lactose percent, and sol-
ids percent (the sum of fat and protein percent), as well 
as yields deviations for milk volume, fat, protein, lactose, 
and solids.

In addition to the milk composition and yield data, 
spectroscopy data for each of 817 MIR wave numbers 
were used as traits in the GWAS. Following Tiplady et al. 
[19], the GWAS was performed iteratively, whereby the 
top significant variant (p < 1.9 × 10–10) on each chromo-
some (if any) was fitted as an additional fixed effect in the 
next iteration, until no new significant variants remained. 
Across all phenotypes and iterations, this approach 
yielded 28,442 significant hits, representing 1847 distinct 
tag variants.

RNA‑seq data and QTL mapping
Mammary biopsies were collected from 411 F2 Friesian-
Jersey cows [20, 21], and RNA sequencing was con-
ducted as previously described. The RNA-seq involved 

high-depth sequencing on an Illumina HiSeq 2000 
instrument, generating 100 bp paired-end reads with two 
samples multiplexed per lane.

Figure  1 provides an overview of the sample process-
ing and analysis workflow. Starting with mammary biop-
sies from 411 F2 Friesian-Jersey cows, PCA-based quality 
control resulted in 371 animals being retained for pri-
mary QTL analyses. These samples were used for vari-
ous QTL mappings including expression QTL (eQTL), 
intronic expression QTL (ieQTL), exon expression QTL 
(eeQTL), and splicing efficiency QTL (seQTL). A sub-
set of 355 cows, after removing samples with different 
library preparation methods, was used for RNA editing 
QTL (edQTL) analysis. The workflow further illustrates 
the non-overlapping subsets of animals used for different 
sequencing approaches: 99 cows were selected for ChIP-
seq analysis leading to ChIP-QTL and allele-specific 
binding QTL (asbQTL), while a separate group of 199 
cows was used for ATAC-seq analysis resulting in ATAC-
QTL identification.

Fig. 1  An overview of the animal sets and sequencing technologies used to derive each QTL dataset
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Before mapping, the reads underwent pre-processing 
using Trimmomatic (version 0.39; [22]) in paired-end 
mode. To facilitate downstream allele-specific analyses, 
the processed reads were then mapped to a masked ARS-
UCD1.2 genome (where known variants were replaced 
by bases differing from both alleles), using STAR (version 
2.7.0; [23]), in two stages. Initially, the mapping utilized 
exon and junction information from the RefSeq database 
(annotation release 106). That mapping was further used 
to identify novel exons and splice junctions for remap-
ping in a second stage. On average, each cow had approx-
imately 39 million uniquely mapped read pairs.

For gene expression analyses, reads mapped to each 
gene in the RefSeq database were counted using the fea-
tureCounts function of the Subread software package 
[24]. Genes with a median read count of less than five 
across samples were excluded. The remaining expres-
sion data were processed using the Bioconductor package 
DESeq2 [25], and principal component analysis (PCA) 
was performed to detect and exclude outlier samples, 
resulting in 371 being retained for further analysis. An 
expression-QTL (eQTL) analysis was conducted using 
the Mixed Linear-model Association Leaving One Chro-
mosome Out (MLMA-LOCO) approach implemented in 
GCTA, with imputed sequence genotypes within 1  Mb 
of the gene used for identifying cis eQTL effects. Taking 
the most significant variant from each significant QTL 
(p < 1 × 10–6) as a tag, and considering only variants with 
MAF > 0.1, yielded 4042 distinct variants.

Individual exon-based read counts were recounted for 
the same 371 animals referenced in the previous para-
graph to facilitate the discovery of exon-eQTL (eeQTL). 
Exons with a median read count of less than five were 
excluded. Exon expression phenotypes were gener-
ated by counting reads mapping to each individual exon 
using featureCounts, then transformed and adjusted 
for sequencing batch effects, as described for the eQTL 
analysis above. The eeQTL analysis was conducted 
using GCTA-LOCO as per the eQTL analysis described 
above. Tag variants were identified with p < 1 × 10–8 and 
MAF > 0.1, yielding 7229 distinct variants across all 
exons.

Impacts of variants on mRNA splicing were explored 
by identifying QTL for pre-mRNA level expression 
(intronic expression QTL, or ieQTL) and splicing effi-
ciency (seQTL), analogous to the experiment reported 
in [26] but extended to the whole genome. For each 
gene, mapped reads that crossed an intron–exon 
boundary (using the same gene annotation as used for 
the eQTL analysis described above) were classified 
as either spliced or unspliced. The phenotype for the 
ieQTL analysis was derived by counting the unspliced 
reads, then proceeding with the VST as per the eQTL 

analysis. For splicing efficiency, the phenotype was 
derived as the proportion of reads that spliced out of 
all reads crossing a splice junction, transformed by the 
logit function to approximate a normal distribution 
more closely. The seQTL analysis was then conducted 
using this phenotype with the same methodology as 
the eQTL and ieQTL analyses. Applying a signifi-
cance threshold of p < 1 × 10–6, the ieQTL and seQTL 
yielded 1856 and 821 distinct variants across genes, 
respectively.

The final dataset created using the RNA-seq data was 
derived by identifying mRNA editing sites, as reported 
in [27]. Briefly, nine RNA-seq cows were sequenced with 
WGS, and the resulting data set used to identify 2413 
mRNA editing sites, of which 152 sites showed signifi-
cant editing QTL (edQTL). From these, 115 unique tag 
variants were identified and remapped for this study 
from the UMD3.1 reference genome to ARS-UCD1.2.

Histone modification ChIP‑seq data and QTL
Functional variants  selected to represent  active histone 
markers (H3K4Me1, H3K4Me3, and H3K27ac) were the 
same as those highlighted as ChIP-seq QTL tag vari-
ants previously [28]. These markers are associated with 
active gene regulation: H3K4Me1 marks enhancers, 
H3K4Me3 marks active promoters, and H3K27ac marks 
active enhancers and promoters. Briefly, this dataset was 
derived from 99 duplicate biopsies collected on the same 
animals sampled for gene expression analyses [20, 21], 
targeting the histone markers H3K4Me1, H3K4Me3, and 
H3K27ac [28]. Chromatin was prepared using the Mag-
nify Chromatin Immunoprecipitation kit (ThermoFisher) 
and sheared to 200–500 bp using the Covaris S2 instru-
ment. Chromatin immunoprecipitation was carried out 
using the Magnify Chromatin Immunoprecipitation 
kit with modifications. The immunoprecipitated sam-
ples were combined after de-crosslinking, and sequenc-
ing libraries were prepared using the NEBNext Ultra II 
DNA Library Prep Kit for Illumina. The libraries were 
sequenced on the HiSeq 3000 platform.

Each library was sequenced to yield between 20 and 
200 million reads, with a median of 58 million reads. 
Raw sequence reads underwent adapter and low-qual-
ity end trimming using Trimmomatic. Trimmed reads 
were mapped to a masked ARS-UCD1.2 genome using 
BWA-MEM (version 0.7.17-r1188; [29]) and poor-quality 
reads were discarded. MACS2 (version 2.1.1; [30]) was 
employed to identify peaks from the mapped ChIP-seq 
reads. Phenotypes for ChIP-seq QTL discovery were 
created for each ChIP-seq peak, based on the number 
of reads mapping into each peak, and also the number 
of reads from, low-depth WGS (≈10 ×) on the input. 
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Phenotype creation proceeded as described in [28]. 
Associations were identified using the MLMA-LOCO 
approach implemented in GCTA, incorporating a covari-
ate for sequencing batch. This yielded 335, 3552, and 
2234 unique tag variants, respectively, for the H3K27ac, 
H3K4Me1, and H3K4Me3 datasets.

Allele‑specific expression and binding QTL
Identification of QTL for allele-specific expression (ase-
QTL), related to exon read counts, was undertaken as 
per [28]. The same methodology was employed using 
the ChIP-seq peak read counts to identify allele-specific 
binding QTL (asbQTL). Briefly, SNPs that were associ-
ated with paternal or maternal allele counts were iden-
tified using a series of two tests, The first employing a 
Z-statistic, then those variants with a p-value < 0.001 
were fitted in a linear model against the log-ratio of 
maternal and paternal allele counts. After filtering for 
p < 1 × 10–8 and MAF > 0.1, this yielded 5625 distinct 
aseQTL variants. Applying a less stringent threshold of 
p < 1 × 10–6 to the asbQTL yielded 252 H3K27ac peak 
variants, 3065 for H3K4Me1, and 3620 for H3K4Me3.

ATAC‑QTL
A subset of 199 RNA-seq animals, not overlapping with 
the 99 animals analysed using ChIP-seq, was used in 
an Assay for Transposase-Accessible Chromatin with 
Sequencing (ATAC-seq) experiment, as described in 
[31]. Briefly, ATAC-seq libraries were prepared using 
the Active Motif ATAC-Seq kit (Active Motif, Carls-
bad, California, USA) then sequenced on an Illumina 
Novaseq machine. Reads were mapped to the same 
masked reference genome as used in the ChIP-seq 
analysis, and peaks called using MACS3 using a con-
sensus alignment comprising a sample of 5% of the 
reads from each individual animal. Phenotyping and 
QTL discovery proceeded analogously to the ChIP-seq 
experiment, as described in [31]. Across all significant 
peaks (p < 1 × 10–8) in the genome, this yielded a total 
of 12,303 unique tag variants.

Coding variants
Coding variants were identified from sequence variants 
using Ensembl’s Variant Effect Predictor (VEP release 97, 
[32]). A total of 195,760 variants with predicted moder-
ate or high effects were identified in the WGS reference 
population. These were filtered further to keep only vari-
ants with MAF > 0.025, average sequence depth > 10 per 
animal, and read mapping quality > 40 (out of a maximum 
of 60 for BWA-MEM). The genes to which the variants 
mapped were subsequently filtered by looking up the 

ratio of observed to expected SNVs in gnomAD (v2.1.1, 
[33]) for missense or pLoF according to whether the VEP 
prediction was MODERATE or HIGH effect respec-
tively. To focus on the variants most likely to be delete-
rious, variants located in genes with o/e ratio > 0.9 were 
removed. This resulted in a final set of 2515 predicted 
deleterious coding variants, comprising 1937 missense 
variants, 274 frameshift variants, 162 stop gains, 57 splice 
donors, 37 splice acceptors, 30 start lost, and 18 stop lost.

Final variant set selection
Version one of the Illumina BovineSNP50 50  K SNP 
panel consisted of 54,001 SNPs which was originally 
constructed to avoid exomic or functional variants. 
From these, a set of 34,927 autosomal variants originally 
selected for commercial genomic prediction were tested 
as the benchmark set. These variants had been previ-
ously filtered to remove markers with MAF < 0.02, low 
call rates (< 0.9), high linkage disequilibrium (R2 > 0.9 
removed), and deviation from Hardy–Weinberg equi-
librium (those with a p < 0.15 were removed). To enable 
a balanced comparison with our functional variant set, 
we randomly selected 32,595 SNPs from this filtered set 
of 34,927 SNPs, hereafter referred to as the ‘current SNP 
panel’. This panel served as our reference standard for 
comparison with all functional variant groups.

A total of 43,319 distinct tag or causal variants were 
identified across all the sequence-based functional vari-
ant sets described above. To reduce the variant set to 
match the number and MAF spectrum of the quality-fil-
tered SNPs from the 50 k panel (i.e. ‘current SNP panel’; 
N = 34,927 variants), we first allocated each variant to 
linkage-disequilibrium (LD) blocks with a threshold of 
R2 = 0.98, then selected one variant to represent each 
block, prioritising those from gene expression QTL, cod-
ing variants, or GWAS over other annotation classes. 
This yielded a set of 39,686 variants. The numbers of 
variants falling within MAF bins of width 0.05 (i.e., [0.00, 
0.05), [0.05, 0.10), etc.), were compared to counts deter-
mined in the same fashion for the current SNP panel. The 
functional variant set was then subsampled within each 
bin, based on the categories and numbers of associated 
QTL for each variant, to match the current SNP panel 
bin counts. This resulted in a final set of 34,927 variants 
with an allele frequency distribution matching that of the 
current SNP panel variant set. These variants comprised 
4463 distinct tags for 45,855 eeQTL (many variants tag 
eeQTL for multiple exons in the same gene), as well as 
tags for 1248 GWAS QTL (many variants tag QTL in 
multiple wavenumbers), 10,368 ATAC-seq QTL, 5900 
eeQTL, 5704 asbQTL, 4940 ChIP-seq QTL, 1600 ieQTL, 
1499 coding variants, 690 seQTL, and 68 edQTL. Many 
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variants had signals in multiple categories. For further 
refinement, only biallelic loci were selected and SNPs 
with minor allele frequencies less than 0.1 were excluded. 
As a result of this filtering, our set comprised of 1124 
GWAS QTL, 9068 ATAC-seq QTL, 5328 eeQTL, 4154 
aseQTL, 5682 asbQTL, 4496 ChIP-seq QTL, 903 ieQTL, 
1389 coding variants, and 608 seQTL (N = 32,595).

Additionally, we classified the functional variants into 
combined categories based on their functional charac-
teristics. For example, we grouped RNA-seq-derived 
variants (eeQTLs, aseQTLs, ieQTLs, and seQTLs) and 
histone-related variants (ATAC-QTLs and asbQTLs), 
resulting in 10,576 RNAseq variants and 14,949 histone-
related variants. We also created specific combinations 
of functional variants from GWAS, RNA-seq, and his-
tone-related categories. This led to the identification of 
three combinations: 6449 SNPs both GWAS and eeQTL, 
12,029 SNPs that were GWAS, eeQTL, and asbQTL, and 
15,966 SNPs that were GWAS, eeQTL, asbQTL, and 
aseQTL. Furthermore, all functional variants were com-
bined into a category termed “AllSNP”, totalling 32,595 
SNPs.

To evaluate the genomic prediction accuracy of each 
functional variant set, we compared it with the accuracy 
obtained by randomly sampling loci across the genome 
equivalent to the functional variant count from the cur-
rent SNP panel. For example, within the GWAS func-
tional category, 1157 loci were selected from this current 
SNP panel. Table 1 displays the functional variants, and 
their associated SNP counts before and after the filtering 
process.

The improvement in genomic prediction accuracy with 
functional variants was determined by contrasting pre-
dictive ability with the performance of an equivalent loci 
count from the Illumina SNP panel. For each functional 
variant group, an equivalent number of SNPs were ran-
domly sampled from the current SNP panel to serve as a 
comparison baseline. The improvement in predictive 
ability was quantified as 100×

(
Functional−Current

Current

)
 where 

Functional refers to genomic prediction accuracy com-
puted using the given putative functional variant cate-
gory and Current refers to the corresponding genomic 
prediction accuracy computed using an equivalent num-
ber of randomly selected SNPs from the current SNP 
panel.

Results
Figure  2 shows the accuracy of genomic prediction for 
different classes of functional variants. Accuracy here is 
measured as the correlation between estimated genomic 
breeding values and the adjusted phenotypes for each 
trait in the test population. Each prediction is bench-
marked against the GEBVs obtained using randomly 
selected samples of the loci from the current SNP panel.

As shown in Fig.  2, the use of 1124 GWAS-selected 
functional variants significantly improved the genomic 
prediction accuracy for all five traits assessed in this 
study, compared to an equivalent number of randomly 
selected SNPs from the current SNP panel. Specifically, 
there was an increase in genomic prediction accuracy 
by 57.77% for fat percent, 48.28% for protein percent, 
15.36% for milk volume, 13.83% for fat yield, and 3.18% 

Table 1  Counts of SNP variants by functional class, initial identified, before and after indel and MAF filtering

Functional class Variant type Initially identified Before indel and MAF After 
indels and 
MAF

GWAS GWAS 1847 1248 1124

RNA-seq eeQTL 7229 5900 5328

aseQTL 5625 4200 4154

ieQTL 1856 1600 903

seQTL 821 690 608

Histone-related asbQTL 6937 5704 5682

ChIP-seq QTL 6121 4940 4496

ATAC-QTL 12,303 10,368 9068

Coding 2515 1499 1389

RNA-seq eeQTL + aseQTL + ieQTL + seQTL 12,344 11,310 10,576

Histone-related ATAC-QTL + absQTL + ChIP-seq QTL 25,361 18,523 17,407

eeQTL + GWAS 9076 7111 6416

eeQTL + GWAS + asbQTL 16,014 12,712 11,996

eeQTL + GWAS + asbQTL + aseQTL 21,638 16,658 15,932

All 43,319 34,927 32,595



Page 8 of 15Alemu et al. Genetics Selection Evolution           (2025) 57:20 

for protein yield. These results highlight the advantages 
of using functional variants over a similar sized set of 
SNPs from the current SNP panel. All results for genomic 
prediction accuracy for the five traits and all functional 
variants are presented in Additional file  1 Table  S1. 
Additionally, an interactive web application (https://​
setegn.​shiny​apps.​io/​Funct​ional_​genom​ics/) is available 
for exploring subsets of SNP types in greater detail. This 
Shiny app provides comprehensive statistics, including 
means, standard deviations, and the number of variants 
for each functional class across all traits. The source code 
for the Shiny app is publicly available and can be accessed 
at the following GitHub repository:  https://​github.​com/​
seteg​nworku/​Funct​ional-​genom​ics.

Similarly, the implementation of RNA-seq functional 
variants led to significant improvements in genomic pre-
diction accuracy across all five evaluated traits, with the 

sole exception of fat yield for seQTL tags. Specifically, 
the eeQTL variants resulted in an accuracy increase of 
12.82% for fat percent, 7.26% for protein percent, 6.40% 
for milk volume, 4.36% for fat yield, and 0.72% for protein 
yield. Furthermore, the utilization of ieQTL functional 
variants led to enhancements in accuracy of 12.16% for 
fat percent, 11.50% for protein percent, 2.65% for milk 
volume, 1.46% for fat yield, and 1.19% for protein yield. 
Interestingly, while the use of seQTL variants caused 
a decrease of 1.11% in the prediction accuracy for fat 
yield, they demonstrated a significant increase of 18.47% 
for protein percent, along with an increase in accuracy 
for fat percent (2.31%), milk volume (2.64%), and pro-
tein yield (0.86%), highlighting their potential utility in 
trait prediction. Meanwhile, aseQTL functional variants 
resulted in accuracy improvements for all five traits, with 
an increase of 14.14% for fat percent, 9.42% for protein 
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Fig. 2  Genomic prediction accuracy using functional variant sets from GWAS and RNA-seq variants (eeQTL, aseQTL, ieQTL and seQTL), 
plus combined RNA-seq, compared to predictions from similar numbers of loci randomly sampled from the current GS panel
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percent, 3.49% for milk volume, 3.86% for fat yield, and 
1.05% for protein yield.

When these four variant sets (eeQTL, aseQTL, seQTL, 
and ieQTL) were combined into a set of 10,576 RNA-
seq-related tag variants, the overall effect varied, leading 
to increased prediction accuracy for fat percent (2.23%), 
protein percent (4.14%), and milk volume (0.13%), but a 
slight decrease for fat yield (0.85%) and for protein yield 
(1.50%). These results are in comparison to a control 
group using random loci sampling from current SNP 
panel, matched in count to the selected RNA-seq loci 
(n = 10,576).

Figure 3 extends the analysis by evaluating the genomic 
prediction accuracy when incorporating different classes 
of functional variants, including histone modifica-
tion ChIP-seq (comprising ChIPseqQTL and asbQTL), 
ATAC-seq, and coding variants. As shown in Fig. 3, the 

correlations between estimated genomic breeding values 
and adjusted phenotypes for each trait in the test popula-
tion are illustrated, compared with an equal number of 
SNPs sampled from the current SNP panel.

The use of histone modification ChIP-seq functional 
variants gave mixed results for genomic prediction accu-
racy. Notably, the asbQTL class showed improvements 
in accuracy when compared to an equivalent set of ran-
dom SNPs from the current SNP panel, demonstrating 
increases of 14.14% for fat percent, 3.84% for protein 
percent, 4.29% for milk volume, 4.54% for fat yield, and 
1.26% for protein yield. However, the other histone modi-
fication ChIP-seq variant class, ChIPseqQTL, showed a 
slight decrease in genomic prediction accuracy for pro-
tein yield (0.56%). Nevertheless, it also exhibited an accu-
racy improvement of 9.70% for fat percent, 6.40% for 
protein percent, 2.28% for milk volume, and 0.61% for fat 

Protein_yield

Milk_volume Fat_yield

Fat_percent Protein_percent

as
bQ

TL
AT

AC
co

din
g

Hist
on

e−
rel

ate
d

as
bQ

TL
AT

AC
co

din
g

Hist
on

e−
rel

ate
d

as
bQ

TL
AT

AC
co

din
g

Hist
on

e−
rel

ate
d

as
bQ

TL
AT

AC

ch
ips

eq
QTL

co
din

g

Hist
on

e−
rel

ate
d

as
bQ

TL
AT

AC

ch
ips

eq
QTL

co
din

g

Hist
on

e−
rel

ate
d

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

Functional Variant Type

Ad
ju

st
ed

 P
he

no
ty

pe
−B

re
ed

in
g 

Va
lu

e 
C

or
re

la
tio

n

Category
Current_GS

Functional_GS

Fig. 3  Genomic prediction accuracy using coding variants, plus tag variants for histone modification ChIP-seq, ATAC-seq, and asbQTL (collectively 
Histone-related variants), compared to similar numbers of loci randomly sampled from the current genomic selection panel
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yield. Such findings underscore the potentially significant 
role of allele-specific binding QTLs in predicting traits.

ATAC-seq functional variants also gave mixed result 
for genomic prediction accuracy across traits. For percent 
traits, these variants yielded an improvement in genomic 
prediction accuracy; however, a slight decrease in accu-
racy was observed for yield traits when compared against 
an equivalent number of SNPs sampled from the current 
SNP panel. Specifically, the enhancements consisted of a 
2.44% increase for fat percent and 3.12% for protein per-
cent. On the other hand, a decline of 1.04% was recorded 
for milk volume, alongside decreases of 0.86% for pro-
tein yield and 1.45% for fat yield. Lastly, coding variants 
yielded minor enhancements in genomic prediction 
accuracy for some traits, and reductions for others, with 
improvements of 2.44% for fat percent, 3.79% for protein 

percent, and 1.31% for milk volume, and reductions of 
3.05% in fat yield and 1.26% in protein yield.

When considering the histone-related functional vari-
ants collectively (ChIP-seq (comprising ChIPseqQTL 
and asbQTL) and ATAC-seq), we observed an increase 
in genomic prediction accuracy, most notably an 8.22% 
improvement for fat percent, alongside 4.76% for protein 
percent, 2.73% for milk volume, and 2.07% for fat yield. 
However, there was a negligible decrease of 0.03% for 
protein yield.

Expanding upon our initial observations, the analysis 
depicted in Fig. 4 provides a more detailed examination 
of genomic prediction accuracy. This is achieved through 
empirically selected combinations of variants from dis-
tinct functional groups, namely GWAS, eeQTL, asbQTL, 
and aseQTL. This comprehensive approach also con-
sidered the aggregated impact of all putative functional 
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Fig. 4  Comparison of genomic prediction accuracy between functional SNP sets and equivalent random samples from current genomic selection 
panel, including parental average analysis
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variants, collectively labelled as “All”. The specific vari-
ant combinations evaluated were “GWAS and eeQTL”, 
“GWAS, eeQTL, and asbQTL”, and “GWAS, eeQTL, 
asbQTL, and aseQTL”. Notably, these combinations gen-
erally either met or exceeded the genomic prediction 
accuracy of the full current SNP panel (N = 32,595) for all 
traits, with the exception of protein yield, while maintain-
ing a SNP count comparable to the current SNP panel.

The combination of “GWAS and eeQTL”, totalling 6416 
markers, demonstrated improvements across the five 
traits. Specifically, there was a 26.17% increase in accu-
racy for fat percent, 15.70% for protein percent, 7.83% for 
milk volume, 5.49% for fat yield, and a modest 1.30% for 
protein yield, compared to an equal number of randomly 
selected markers from the current SNP panel. Progress-
ing to the combination of “GWAS, eeQTL, and asbQTL”, 
comprising 11,996 markers an improvement in genomic 
prediction accuracy was observed. This improvement was 
quantified as a 10.59% increase for fat percent, 8.41% for 
protein percent, 3.32% for milk volume, and 2.60% for fat 
yield. However, it is noteworthy that there was a marginal 
decrease of 0.11% in protein yield. These metrics were 
compared with a similar loci count (n = 11,996 mark-
ers) from the 32,595 SNP panel. Further, the ensemble 
of “GWAS, eeQTL, asbQTL, and aseQTL” variants, con-
taining 15,932 markers, yielded an increase in genomic 
prediction accuracy by 2.70% for fat percent, 5.40% for 
protein percent, 1.17% for milk volume, and 0.39% for 
fat yield, alongside a minor decrease of 0.61% in pro-
tein yield. This was evaluated against a random sample 
of loci from the 32,595 SNP panel, equating in count to 
this ensemble (n = 15,932 markers). Finally, the integra-
tion of all functional variants demonstrated an increase 
in prediction accuracy by 1.76% for fat percent, 2.97% for 
protein percent, 0.51% for milk volume, and 0.26% for fat 
yield, but with a slight decrease of 0.43% in protein yield. 
This was assessed against random loci samples from the 
50 K SNP panel, matched in loci count to all functional 
variant groups (n = 32,595 markers). When compared 
with the parental average accuracy from PBLUP, which 
stood at 0.30 for milk volume, 0.28 for fat yield, and 0.29 
for protein yield, genomic prediction accuracy was sub-
stantially higher in almost all scenarios. For instance, the 
combination of “GWAS and eeQTL” yielded genomic 
prediction accuracies of 0.43 for current SNP panel (0.47 
for functional GS) for milk volume, 0.35 for current SNP 
panel (0.37 for functional GS) for fat yield, and 0.40 for 
current SNP panel (0.41 for functional GS) for protein 
yield. This clearly demonstrates that family linkage infor-
mation does not significantly affect the analysis, under-
scoring the relevance of genomic information in this 
context.

Discussion
This primary aim of this study was to investigate the pre-
dictive performance of various categories of function-
ally enriched variants compared to equivalent numbers 
of variants from a generic commercial SNP panel. Five 
broad classes of variants were assessed: GWAS, RNA-seq 
(eeQTL, ieQTL, aseQTL, seQTL), histone modification 
ChIP-seq (Chip-seqQTL, asbQTL), ATAC-seq, and cod-
ing variants. We also evaluated combinations of GWAS, 
eeQTL, asbQTL, and aseQTL, and explored the effect of 
combining all variants (“All”). Our results emphasized the 
influence of these variants on genomic prediction accu-
racy across five traits in lactating dairy cattle: fat percent, 
protein percent, milk volume, fat yield, and protein yield.

Among the various functional variants analysed, 
GWAS tag variants were particularly effective at improv-
ing genomic prediction accuracy across all five key traits 
(fat percent, protein percent, milk volume, fat yield, and 
protein yield), when compared with equivalent numbers 
of randomly sampled SNPs from the current SNP panel. 
The improved accuracy of genomic predictions linked 
to GWAS variants is assumedly due to their consistent 
linkage disequilibrium with causal SNPs across different 
breeds. This observation aligns with previous studies that 
has shown the advantages of including reliable SNPs from 
genome-wide association studies to increase genomic 
prediction accuracy when combined with SNP chip data 
[9, 34–36]. Furthermore, our findings align with those 
of other studies [37, 38], emphasizing the importance of 
carefully choosing SNPs via GWAS to improve genomic 
prediction accuracy. This finding highlights the substan-
tial role and effectiveness of GWAS-informed SNP selec-
tion in increasing genomic prediction accuracy for dairy 
cattle.

The incorporation of RNA-seq functional variants into 
genomic prediction models has revealed their capability 
to refine trait predictions in dairy cattle breeding. Nota-
bly, when compared with an equivalent number of ran-
domly sampled SNPs from the current SNP panel, tag 
variants for eeQTL, ieQTL, and aseQTL exhibited sig-
nificant improvements in genomic prediction accuracies 
for the five traits. This consistent improvement across all 
evaluated traits suggests an important role for these reg-
ulatory variants, in controlling various important dairy 
cattle traits. In contrast, seQTL variants displayed mixed 
results: they improved predictions for protein percent by 
18.47% likely tied to their role in gene splicing processes, 
as seen in the CSN3 gene [39] but they reduced accuracy 
in predicting fat yield. Furthermore, when these RNA-seq 
variants (eeQTL, ieQTL, aseQTL, seQTL) were used in 
combination, their collective impact was even more pro-
nounced. This aligns with findings in maize research by 
Guo et al. [40], where integrating various gene expression 
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data significantly increased genomic prediction accuracy, 
particularly for yield-related traits. In our study, the com-
bined use of RNA-seq variants led to improvements in 
genomic prediction accuracy in traits such as fat percent, 
protein percent, and milk volume. However, a decrease 
in genomic prediction accuracy for fat yield and protein 
yield was also observed, indicating trait-specific impacts 
of these variants. Despite these variations, the collec-
tive enhancement reaffirms the value of RNA-seq data 
in identifying complex, trait-associated QTLs, consistent 
with recent research [14] that highlights the substantial 
role of gene expression and RNA splicing in the heritabil-
ity of dairy cattle traits.

The investigation of the effects of histone modification 
ChIP-seq and ATAC-seq functional variants on genomic 
prediction accuracy in this study showed variable effects. 
The asbQTL variant class exhibited an improvement 
in prediction for all five traits investigated in this study, 
pointing towards the influence of chromatin confor-
mation on gene regulation in diverse dairy cattle traits. 
While the histone modification ChIP-seq QTL variant 
class showed a decrease in accuracy for protein yield pre-
diction, it provided significant improvements in other 
traits, in fat and protein percent. These observations 
align with the study conducted by Xiang et al. [6], implies 
that these traits might be influenced by large-effect vari-
ants. On the other hand, the inclusion of ATAC-seq func-
tional variants led to modest yet notable improvements, 
specifically a 3.12% increase in protein percent, a 2.44% 
increase in fat percent, and a 0.51% increase in milk vol-
ume, demonstrating their potential utility in enhanc-
ing genomic prediction accuracy, mainly for the percent 
traits. However, their performance in predicting fat and 
protein yield was less remarkable compared to an equiva-
lent number of randomly chosen SNPs from the current 
SNP panel. Furthermore, combining functional genomic 
variants related to histones, identified through both his-
tone modification ChIP-seq (including ChIPseqQTL and 
asbQTL) and ATAC-seq, resulted in improved accuracy 
for predicting traits like fat percent, protein percent, and 
milk volume. Using multiple categories of chromatin-
related QTL likely captures a broader spectrum of regula-
tory elements key to influencing gene expression relevant 
to these traits.

In addition to these findings, coding variants were also 
found to increase genomic prediction accuracy for milk 
volume, fat percent, and protein percent. This aligns with 
the observations of Xiang et  al. [6], who suggested an 
enrichment of large-effect variants within these coding 
variants for these traits. However, the use of coding vari-
ants resulted in a decrease in the prediction accuracy for 
fat yield and protein yield. This may be due to the absence 
of large-effect variants for these traits amongst the 

coding variants. While coding variants can have signifi-
cant effects, they do not always explain the most herit-
ability [41]. This highlights the importance of considering 
both the size of the effect and the frequency of variants 
when assessing their contribution to trait variance.

The combination of functional categories of variants, 
as shown in Fig.  4, led to some interesting findings. 
Genomic prediction accuracy improved for all combi-
nations of functional variants across the traits, except 
for protein yield, when compared to a similar number 
of SNPs randomly selected from current SNP panel. 
One interesting point is that the genomic prediction 
accuracy obtained using the combinations “GWAS, 
eeQTL, and asbQTL” and “GWAS, eeQTL, asbQTL, 
and aseQTL” combinations, which consists of 11,996 
and 15,932 SNPs respectively, closely matched the 
accuracy of both the filtered and complete SNP pan-
els. For example, the combination of “GWAS, eeQTL, 
asbQTL, and aseQTL” slightly outperformed the com-
plete panel for percent traits, generating accuracies 
of 0.760 for fat percent and 0.730 for protein percent 
(compared to 0.756 and 0.720 with 34  K SNPs). How-
ever, this combination showed slightly lower accuracy 
for milk volume (0.491 versus 0.496), fat yield (0.40 ver-
sus 0.399), and protein yield (0.436 versus 0.447). These 
results indicate that the genomic prediction accuracy 
achieved by the current 32,595 SNP chip can be rep-
licated by combining informative functional variants 
with a lower number of SNPs (< 20  K) from various 
sources such as GWAS, RNA-seq, and ChIP-seq. There-
fore, for these traits, a SNP chip designed using these 
functional variants (16  K) can generate genomic pre-
diction accuracy comparable to that of the current 33 K 
SNP panel, particularly for protein percent and fat per-
cent. However, it is important to note that this focused 
SNP panel may have limited applicability across diverse 
traits and breeds beyond those studied here. Breeding 
organizations typically consider a wide range of traits 
including conformation, health, and fitness, which may 
not be adequately captured by this panel. Addition-
ally, while a smaller panel might seem cost-effective, 
developing chips with specific functional variants could 
potentially increase costs, which may not be economi-
cally viable for many breeding organizations. Future 
research should explore how to balance the preci-
sion offered by functional variants with the need for 
comprehensive trait coverage in breeding programs, 
possibly by incorporating these variants into exist-
ing broad-spectrum SNP panels rather than replacing 
them entirely. Figure 4 also shows that genomic predic-
tion accuracy increased for four of the five milk traits 
when all functional variants were combined (32.6  K). 
However, the enhanced predictive accuracy achieved 
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with the full set of functional variants diminished when 
compared with specific functional variant categories, 
such as GWAS and eeQTL. The reason for this might 
be that genomic prediction accuracy using the current 
SNP chip might increase when 32,595 SNPs are sam-
pled from a 50  k panel, mainly because a significant 
portion of the causative SNPs could be in linkage dise-
quilibrium (LD) with the selected SNPs; however, there 
is still a minor improvement in genomic prediction 
accuracy in the fat percent and protein percent traits. 
While our study shows promise in using functional 
variants for genomic prediction accuracy in dairy cat-
tle for specific traits (protein percent and fat percent), 
there are practical challenges and limitations associated 
with this approach. Specifically, sequencing and impu-
tation are essential prerequisites for utilizing functional 
variants, and errors stemming from these processes can 
potentially offset the improvements in prediction accu-
racy. Therefore, before transitioning from current SNP 
chips to a panel based on imputed functional variants 
or creating new chips containing these variants, fur-
ther research is essential to comprehensively assess the 
trade-offs between potential benefits, logistical com-
plexities, and financial implications.

We observed an improvement in genomic prediction 
accuracy for protein percent and fat percent across all 
functional variants, although the degree of improve-
ment varied. This difference in accuracy may be attrib-
uted to the fact that percent traits tend to have more 
precise measurements compared to yield traits. Per-
cent traits are estimated using Fourier Transform 
Mid-Infrared (FT-MIR) spectroscopy, a measurement 
technique with inherent but manageable levels of error. 
Conversely, yield traits are calculated by multiplying 
the percent traits with milk volume, obtained through 
herd testing. This measurement of milk volume also 
carries inherent errors, and when combined with errors 
from the percent traits, it results in a compounded 
error (error × error) in the yield trait calculation. This 
compounded error is reflected in the reduced genomic 
prediction accuracy of yield trait compared to percent 
traits and reduces the sensitivity to detect genetic sig-
nals. Furthermore, the varying accuracy between per-
cent traits and yield traits could also be influenced by 
the presence of large-effect QTLs near GWAS SNPs or 
RNA-seq variants, such as eeQTL and aseQTL. In con-
trast, traits like milk volume and fat yield showed slight 
improvements in genomic prediction accuracy, with 
protein yield even exhibiting a slight decrease. This dif-
ference in performance may arise from the existence of 

multiple QTLs with smaller effects on milk volume and 
fat yield. These smaller effects are more effectively iden-
tified by SNPs dispersed throughout the genome, align-
ing with findings [5, 6] that highlight the trait-specific 
nature of advancements in genomic prediction accu-
racy in dairy cattle. As a result, careful consideration of 
the traits in question is essential when selecting func-
tional variants for genomic prediction to optimize the 
benefits derived from these variants. A deeper under-
standing of how various functional variants impact 
genomic prediction accuracy allows for the develop-
ment of more precise and effective breeding strategies 
tailored to specific traits.

This study demonstrates that genomic prediction uti-
lizing functional variants generally surpasses the per-
formance of the current GS panel. This comparison was 
conducted using an equivalent number of loci, with SNPs 
for the panels being randomly chosen from the existing 
SNP panel. However, further improvement in predictive 
power using these functional variants could be achieved 
with advanced statistical models like Neural Network 
Multilayer Models (NN-MM). These models are adept at 
capturing complex genetic regulatory sequences, mirror-
ing the data’s layered structure from regulatory and cod-
ing sequences to phenotypes [42]. The ability of NN-MM 
to handle non-linear feature interactions, as indicated in 
the work of Zhao et al. [43], might offer methodological 
advantages. Expanding sample sizes in functional variant 
discovery, especially in histone modification ChIP-seq 
and ATAC-seq, would reveal additional SNPs, potentially 
enriching genomic prediction. Investigating other func-
tional variant classes, such as transcribed enhancers and 
non-coding RNAs, is also promising for increasing pre-
diction accuracy.

Conclusions
The integration of all functional variants (32,595 SNPs) 
led to modest improvements in genomic prediction accu-
racy. Notably, we observed an improvement of 1.76% for 
fat percent, 2.97% for protein percent, 0.51% for milk vol-
ume, and 0.26% for fat yield. However, there was a slight 
decrease of 0.43% in protein yield compared to using an 
equivalent number of SNPs from the Illumina 50 k SNP 
chip. These results, although not substantial, are none-
theless indicative of the value added by using functional 
variants. Importantly, the research indicates that care-
fully chosen combinations of functional variants can 
provide genomic prediction accuracies that match those 
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of more extensive SNP panels, while requiring a sig-
nificantly smaller number of SNPs (16  k versus 32.6  k). 
While this finding suggests potential for more focused 
SNP panels, further research is needed to evaluate their 
applicability across diverse traits and breeds. Future stud-
ies should explore strategies to incorporate these func-
tional variants into existing SNP panels, to potentially 
increase accuracy for specific traits while maintaining 
relevance to the diverse, physiologically distinct, traits 
that are the focus of most breeding programs.
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